已知,如图,锐角△ABC中,AD⊥BC于D,H为垂心(三角形三条高线的交点);在AD上有一点P,且∠BPC为直角.
求证:PD2=AD·DH.

答案
证明:如图,连接BH交AC于点E,
∵H为垂心
∴BE⊥AC
∴∠EBC+∠BCA=90°
∵AD⊥BC于D
∴∠DAC+∠BCA=90°
∴∠EBC=∠DAC
又∠BDH=∠ADC=90°
∴△BDH∽△ADC
∴,即
∵∠BPC为直角,AD⊥BC
∴PD2=BD·DC
∴PD2=AD·DH
知识点:相似之共线线段的比例问题

略

略
