如图,直线
交直线y=x+1于点B,交x轴于点C,过点C作x轴的垂线,交直线y=x+1于点A;若坐标系内存在点P,满足以A,B,C,P为顶点的四边形为平行四边形,则点P的坐标为( )

- A.
- B.
- C.
- D.
答案
正确答案:C
知识点:平行四边形的存在性

1.解题要点
①分析定点、动点(A,B,C为定点,P为动点);
②三定一动且连接顺序不确定,那么连接三条定线段,分别以三边为对角线进行分类,利用平移求点的坐标;
③结合图形进行验证。
2.解题过程
联立,得B(-2,-1),
∵直线交x轴于点C,
∴C(1,0),
∴A(1,2),
如图,以AB为对角线作平行四边形BCAP1,以AC为对角线作平行四边形ABCP2,以BC为对角线作平行四边形ABP3C,
解得,
类比可求得.
综上,符合题意的点P的坐标为.
故选C.

略
