如图,在Rt△ABC中,AB=CB,BO⊥AC,把△ABC折叠,使AB落在AC上,点B与AC上的点E重合,展开后,折痕AD交BO于点F,连结DE、EF.下列结论:①tan∠ADB=2;②图中有4对全等三角形;③若将△DEF沿EF折叠,则点D不一定落在AC上;④BD=BF;⑤S四边形DFOE=S△AOF,上述结论中正确的个数是()

- A.1个
- B.2个
- C.3个
- D.4个
答案
正确答案:C
知识点:全等三角形的判定与性质 翻折变换(折叠问题) 锐角三角函数的定义

①由折叠可得BD=DE,而DC>DE,
∴DC>BD,
∴tan∠ADB≠2,故①错误;
②图中的全等三角形有△ABF≌△AEF,△ABD≌△AED,△FBD≌△FED,(由折叠可知)
∵OB⊥AC,∴∠AOB=∠COB=90°,
在Rt△AOB和Rt△COB中,,
∴Rt△AOB≌Rt△COB(HL),则全等三角形共有4对,故②正确;
③∵AB=CB,BO⊥AC,把△ABC折叠,
∴∠ABO=∠CBO=45°,∠FBD=∠DEF,
∴∠AEF=∠DEF=45°,
∴将△DEF沿EF折叠,可得点D一定在AC上,故③错误;
④∵OB⊥AC,且AB=CB,
∴BO为∠ABC的平分线,即∠ABO=∠OBC=45°,
由折叠可知,AD是∠BAC的平分线,即∠BAF=22.5°,
又∵∠BFD为三角形ABF的外角,
∴∠BFD=∠ABO+∠BAF=67.5°,
易得∠BDF=180°-45°-67.5°=67.5°,
∴∠BFD=∠BDF,
∴BD=BF,故④正确;
⑤连接CF,
∵△AOF和△COF等底同高,
∴SAOFAOF=SCOFCOF,
∵∠AEF=∠ACD=45°,
∴EF∥CD,
∴SEFDEFD=SEFCEFC,
∴SDFOEDFOE=SCOFCOF,
∴SDFOEDFOE=SAOFAOF,故⑤正确;
正确的有3个,故选C.

略
