如图,过A(8,0),B两点的直线与直线交于点C,动点P从原点O出发,以每秒1个单位长度的速度沿x轴向右平移,过点P作x轴的垂线,分别交线段BC,OC于点D,E,以DE为边向左侧作等边△DEF,当直线到达点C时,停止运动.设△DEF与△BCO重叠部分的面积为S,点P的运动时间为t.
(1)C点坐标是(    ),根据S表达的不同,t的分段是(    )

  • A.
  • B.
  • C.
  • D.

答案

正确答案:C

知识点:一次函数之动点问题  

解题思路


1.思路分析
①研究背景图形,如图(把函数信息转化为几何信息)

②分析运动过程,分段,定范围;

③根据路线图画图,表达,设计方案并计算.
2.解题过程
根据题意可得,直线AB的函数解析式为:
联立两个直线表达式可得C点坐标为
的取值范围是
如图,过点E作EM⊥y轴于点M,过点D作DG⊥y轴于点G.

∵D点坐标为,E点坐标为

∴等边△DEF的边DE上的高为:
∴当点F落在BO边上时,,解得,
故不同状态对应的分段分别是:
故选C.

易错点

查看相关视频

下载次数:1

<<上一题   下一题>>