已知抛物线y=ax2+bx+c(a<0),顶点C的坐标为(1,-4),且与x轴交于A、B两点,A(-1,0).
(1)求这条抛物线的解析式;
(2)如图,以AB为直径作圆,与抛物线交于点D,与抛物线的对称轴交于E,依次连接A、D、B、E,点Q为AB上一个动点(Q与A、B两点不重合),过点Q作QF⊥AE于F,QG⊥DB于G,请判断是否为定值,若是,请求出此定值,若不是,请说明理由;
(3)在(2)的条件下,若点H是线段EQ上一点,过点H作MN⊥EQ,MN分别与边AE、BE相交于M、N(M与A、E不重合,N与E、B不重合),请判断是否成立,若成立,请给出证明,若不成立,请说明理由.

答案

(1)该抛物线的解析式为  
(2)的值为定值1.
(3)成立

知识点:中考压轴之定值问题  

解题思路

解:(1)设抛物线解析式为将A(-1,0)代入,即

 
            


易错点

查看相关视频

下载次数:9

<<上一题   下一题>>