天天练

中考数学选择填空实战演练(二)

满分100分    答题时间17分钟

已经有1331位用户完成了练习

单选题(本大题共小题, 分)

1.(本小题6分) ,a在两个相邻整数之间,则这两个整数是(    )

    核心考点: 估算无理数的大小 

    2.(本小题6分) PM2.5是指大气中直径小于或等于2.5μm(1μm=0.000001m)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm用科学记数法可表示为(    )

      核心考点: 科学记数法——表示较小的数 

      3.(本小题6分) 如图,直线AB,CD相交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM的度数为(    )

        核心考点: 角平分线的定义  角的计算  余角补角的定义 

        4.(本小题6分) 若关于x的一元二次方程的一个根为0,则m的值为(    )

          核心考点: 一元二次方程的定义  一元二次方程的解 

          5.(本小题6分) 一个几何体由一些大小相同的小正方体组成,它的主视图和俯视图如图所示,则组成该几何体的小正方体至少有(    )

            核心考点: 三视图最多最少问题  三视图 

            6.(本小题7分) 16位参加百米半决赛同学的成绩各不相同,按成绩取前8位进入决赛.如果小刘知道了自己的成绩后,要判断是否能进入决赛,其他15位同学成绩的下列数据中,能使他得出结论的是(    )

              核心考点: 中位数  极差  方差  平均数 

              7.(本小题7分) 一天,小亮看到家中的塑料桶中有一个竖直放置的玻璃杯,塑料桶和玻璃杯都是圆柱形,桶口的半径是杯口半径的2倍,其主视图如图所示.小亮决定做个试验:把塑料桶和玻璃杯看作一个容器,对准杯口匀速注水,注水过程中杯子始终竖直放置,则下列能反映容器最高水位h与注水时间t之间关系的大致图象是(    )

                核心考点: 确定函数图象 

                8.(本小题7分) 如图,正方形ABCD内有两条相交线段MN,EF,M,N,E,F分别在边AB,CD,AD,BC上.小明认为:若MN=EF,则MN⊥EF;小亮认为:若MN⊥EF,则MN=EF.你认为(    )

                  核心考点: 正方形的性质  全等三角形的判定与性质 

                  9.(本小题7分) 因式分解:=         

                    核心考点: 因式分解 

                    10.(本小题7分) 一副直角三角板按如图所示的方式叠放在一起,则∠α的度数为        

                      核心考点: 三角形的外角性质 

                      11.(本小题7分) 如图所示,在正方形铁皮中,剪下一个圆和一个扇形,使余料尽量少.用圆做圆锥的底面,用扇形做圆锥的侧面,正好围成一个圆锥.若圆的半径为r,扇形的半径为R,那么       

                        核心考点: 圆锥的计算 

                        12.(本小题7分) 如果m是从0,1,2,3四个数中任取的一个数,n是从0,1,2三个数中任取的一个数,那么关于x的一元二次方程有实数根的概率为        

                          核心考点: 概率公式  列表法与树状图法 

                          13.(本小题7分) 如图,已知圆柱形玻璃杯的高为6cm,底面周长为16cm,在杯内离杯底2.5cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2.5cm且与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短路程为       

                            核心考点: 勾股定理  轴对称——最短路线问题  轴对称——最值问题 

                            14.(本小题7分) 如图,在边长为2a的等边三角形ABC中,M是高CH所在直线上的一个动点,连接BM,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动的过程中,线段HN长度的最小值为        

                              核心考点: 等边三角形的性质  几何最值问题  旋转思想 

                              15.(本小题7分) 已知抛物线与x轴交于两点,与y轴交于点C,则能使△ABC为等腰三角形的抛物线有      条.

                                核心考点: 二次函数与几何综合  等腰三角形的存在性