天天练

三角形全等之倍长中线(倍长)(北师版)

满分100分    答题时间30分钟

已经有707位用户完成了练习

单选题(本大题共小题, 分)

1.(本小题25分) 如图所示,△ABC中,AB=3,AC=7,AD为△ABC的中线,求AD的取值范围.

先在图上走通思路后再填写空格内容:
1.因为AD为△ABC的中线,考虑                                (辅助线叙述);
2.进而利用全等三角形的判定         ,证明              
3.由全等可得                
4.观察图形,2AD放在△       中,利用三角形的三边关系,可得2以上空缺处依次所填最恰当的是(    )

    核心考点: 三角形全等之倍长中线 

    2.(本小题25分) 已知:如图,在△ABC中,AD为BC边的中线,AD=5,AC=8,求边AB的取值范围.


    请你仔细观察下列序号所代表的内容:
    ①延长AD到点E,使DE=AD,连接CE;
    ②延长AD到点E,连接CE;
    ③延长AD到点E,使DE=AD,连接CE,过点E作CE∥AB;
    ④CE=BA,∠E=∠BAD;
    ⑤CE=BA.
    以上空缺处依次所填最恰当的是(    )

      核心考点: 三角形全等之倍长中线 

      3.(本小题25分) 已知,在△ABC中,AB=5,中线AD=7,则边AC的取值范围是(    )

        核心考点: 三角形三边关系  倍长中线 

        4.(本小题25分) 已知CD=AB,∠BDA=∠BAD,AE是△ABD的中线,
        求证:∠C=∠BAE.


        请你仔细观察下列序号所代表的内容:
        ①延长AE到F,连接DF,使得DF∥AB;
        ②延长AE到F,使得EF=AE,连接DF;
        ③延长AE到F,使得EF=AE,连接DF,过D作DF∥AB;
        ④AB=FD,AE=EF;
        ⑤AB=FD,∠BAE=∠F,∠B=∠1;
        ⑥AB=FD;
        ⑦AF=AC;
        ⑧∠F=∠C.
        以上空缺处依次所填最恰当的是(    )

          核心考点: 三角形全等之倍长中线