手机客户端
校讯通首页
家校互动
在线课程
天天练
博客
家校通首页
博客
在线课程
天天练
学习中心
您好,请
登录
登录学科测评
学习资料
老师推荐
系统通知
订单
包月订单
课程
天天练
收藏
关注
成绩
消息
帮助
新手帮助
购课指南
支付说明
天天练
>>
八年级
>>
试卷预览
试卷下载
评论
三角形全等(类比探究)(人教版)(专题)
满分100分 答题时间45分钟
已经有
0
位用户完成了测试
推荐给家长
推荐给好友
推荐给好友
单选题(本大题共
小题, 共
分)
1
.
(本小题14分)
如图,在四边形ABCD中,AB=AD,∠BAD=90°,P是直线CD上一点,连接PA,分别过点B,D作BE⊥PA,DF⊥PA,垂足分别为点E,F.
(1)如图1,当点P在边CD上时,求证:EF=BE-DF.
解题思路:
(1)由BE⊥PA,DF⊥PA,得∠DFA=∠AEB=90°,所以∠2+∠3=90°;
又有∠BAD=90°,可以得到∠1+∠3=90°,因此
,理由是
;
又因为AD=BA,∠DFA=∠AEB,因此根据三角形全等的判定定理
,可以得到△DFA≌△AEB,由全等的性质得到
,最后得到EF=AF-AE=BE-DF.
①∠BAE=∠ADF;②∠1=∠2;③同角或等角的余角相等;④同角或等角的补角相等;
⑤AF=BE,DF=AE;⑥∠3=∠ADF,AF=BE;⑦AAS;⑧ASA
以上横线处,依次所填正确的是( )
核心考点:
略
2
.
(本小题14分)
(上接第1题)(2)如图2,当点P在DC的延长线上时,求证:EF=DF-BE.
解题思路:
(2)由BE⊥PA,DF⊥PA,得∠DFA=∠AEB=90°,所以∠2+∠3=90°;又有∠BAD=90°,可以得到∠1+∠3=90°,因此
,理由是
;
又因为AD=BA,∠DFA=∠AEB,因此根据三角形全等的判定定理
,可以得到△DFA≌△AEB,由全等的性质得到
,最后得到
EF=AE-AF=DF-BE.
①∠BAE=∠ADF;②∠1=∠2;③同角或等角的补角相等;④同角或等角的余角相等;
⑤DF=AB,AF=BE;⑥AF=BE,DF=AE;⑦AAS;⑧ASA
以上横线处,依次所填正确的是( )
核心考点:
略
3
.
(本小题14分)
(上接第1,2题)(3)如图3,当点P在CD的延长线上时,BE,DF,EF这三条线段之间的数量关系和证明思路分别是( )
核心考点:
略
4
.
(本小题14分)
在四边形ABCD中,BA=BC,
.
(1)如图,当点M,N分别在AD,CD上时,若∠BAD=∠BCD=90°,求证:MN=AM+CN.
解题思路:(1)如图,延长NC到E,使CE=AM,连接BE.
由∠BAD=∠BCD=90°,得∠BAM=∠BCE,因为BA=BC,AM=CE,因此根据三角形全等的判定定理
,可以得到△BAM≌△BCE,由全等的性质得到
;
又因为
,可得
,因此根据三角形全等的判定定理SAS,可以得到
,由全等的性质得到MN=EN;
通过等量代换可得MN=EN=CE+CN=AM+CN.
①ASA;②SAS;③SSA;④AM=CE,BM=BE;⑤∠1=∠2,BM=BE;⑥∠1=∠2;⑦∠MBN=∠EBN;⑧△BMN≌△BEN;⑨△BAM≌△BCE.
以上横线处,依次所填正确的是( )
核心考点:
略
5
.
(本小题14分)
(上接第4题)(2)如图,当点M,N分别在AD,CD上时,若∠A=∠D,AD∥BC,为证明MN=AM+CN,需要作出辅助线,下列辅助线的叙述和证明思路正确的是( )
核心考点:
略
6
.
(本小题14分)
(上接第4,5题)(3)如图,当点M,N分别在AD,CD上时,试猜想当∠BAD与∠BCD满足什么关系时,可使得MN=AM+CN.( )
核心考点:
略
7
.
(本小题16分)
(上接第4,5,6题)(4)如图,当点M,N分别在DA,CD的延长线上时,若∠BAD与∠BCD互补,证明:MN=CN-AM.下面给出了证明的路线图:
如图,在CN上截取CE,使CE=AM,连接BE.
①△BAM≌△BCE(SAS);②△BMN≌△BEN(SAS);③∠1=∠2,BM=BE;④BM=BE,BA=BC;⑤∠1=∠2.
以上横线处,依次所填正确的是( )
核心考点:
略
推荐给家长
推荐给好友
推荐给好友
您有
60秒
的时间
预览
试卷,60秒后将
自动进入
在线答题页面
提交试卷后,系统将进行
批改
并提供
答案
不再提醒
预览时间还剩
60
秒
或者,
立即