学科测评首页

河南中考解答题T22-23限时练(二)

满分21分    答题时间41分钟

已经有0位用户完成了测试

解答题(本大题共小题, 分)

1.(本小题10分) 在Rt△ACB和Rt△AEF中,∠ACB=∠AEF=90°,若点P是BF的中点,连接PC,PE.
特殊发现:如图1,若点E,F分别落在边AB,AC上,则结论:PC=PE成立(不要求证明).
问题探究:把图1中的△AEF绕着点A顺时针旋转.
(1)如图2,若点E落在边CA的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;
(2)如图3,若点F落在边AB上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;
(3)记,当k为何值时,△CPE总是等边三角形?(请直接写出k的值,不必说明理由)

    核心考点: 类比探究 

    2.(本小题11分) 在平面直角坐标系中,直线与x轴交于点B,与y轴交于点C,二次函数的图象经过B,C两点,且与x轴的负半轴交于点A,动点D在直线BC下方的二次函数图象上.
    (1)求二次函数的表达式.
    (2)如图1,连接DC,DB,设△BCD的面积为S,求S的最大值.
    (3)如图2,过点D作DM⊥BC于点M,是否存在点D,使得△CDM中的某个角恰好等于∠ABC的2倍?若存在,直接写出点D的横坐标;若不存在,请说明理由.

      核心考点: 二次函数与几何综合  角度的存在性