学科测评首页

【中考数学压轴题】十大类型之三角形的存在性问题备考练习

满分100分    答题时间40分钟

已经有83位用户完成了练习

本试卷为  的课后练习题

解答题(本大题共小题, 分)

1.(本小题50分) 如图,已知直线l1的解析式为y=3x+6,直线l1与x轴、y轴分别相交于A、B两点,直线l2经过B、C两点,点C的坐标为(8,0),又已知点P在x轴上从点A向点C移动,点Q在直线l2从点C向点B移动.点P、Q同时出发,且移动的速度都为每秒1个单位长度,设移动时间为t秒(1<t<10).(1)求直线l2的解析式.(2)设△PCQ的面积为S,请求出S关于t的函数关系式.(3)试探究:当t为何值时,△PCQ为等腰三角形?

    核心考点: 中考压轴之三角形存在性问题 

    2.(本小题50分) 如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴相交于点C.连结AC、BC,A、C两点的坐标分别为A(-3,0)、C,且当x=-4和x=2时二次函数的函数值y相等.(1)求实数a、b、c的值;(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连结MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q,使得以B,N,Q为顶点的三角形与△ABC相似?如果存在,请求出点Q的坐标;如果不存在,请说明理由.


      核心考点: 中考压轴之三角形存在性问题 

      上一讲:      下一讲: