如图1,△ABC与△CDE是等腰直角三角形,直角边AC,CD在同一条直线上,点M,N分别是斜边AB,DE的中点,点P为AD的中点,连接AE,BD.
(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;
(2)现将图1中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图2,AE与MP,BD分别交于点G,H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;
(3)若图2中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图3,写出PM与PN的数量关系,并加以证明.



答案
(1)PM=PN,PM⊥PN;
(2)成立,证明略;
(3)PM=kPN,证明略.


略
