某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:

(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;
(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;
(3)为了促销,公司决定仅对甲店
型产品让利销售,每件让利
元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?
答案
(1)W=20x+16800(10≤x≤40);
(2)符合条件的方案共3种:
方案一,甲店A型产品38件,B型产品32件,乙店A型产品2件,B型28件;
方案二,甲店A型产品39件,B型产品31件,乙店A型产品1件,B型29件;
方案三,甲店A型产品40件,B型产品30件,乙店A型产品0件,B型30件;
(3)①当0<a<20时,x=40,即甲店A型40件,B型30件,乙店A型0件,B型30件,能使总利润达到最大.
②当a=20时,10≤x≤40,符合题意的各种方案,使总利润都一样.
③当20<a<30时,x=10,即甲店A型10件,B型60件,乙店A型30件,B型0件,能使总利润达到最大.
知识点:方程与不等式的应用题

略

略
