一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形纸片,则至少要剪的刀数是()

  • A.2004
  • B.2005
  • C.2006
  • D.2007

答案

正确答案:B

知识点:规律探索型问题  

解题思路

根据题意,用剪刀沿不过顶点的直线剪成两部分时,每剪开一次,使得各部分的内角和增加360°.于是,剪过次后,可得(+1)个多边形,这些多边形的内角和为(+1)×360°.因为这(+1)个多边形中有34个六十二边形,它们的内角和为34×(62-2)×180°=34×60×180°,其余多边形有(+1)-34=-33(个),而这些多边形的内角和不少于(-33)×180°.所以(+1)×360°≥34×60×180°+(-33)×180°,解得≥2005.当我们按如下的方式剪2005刀时,可以得到符合条件的结论.先从正方形上剪下1个三角形,得到1个三角形和1个五边形;再在五边形上剪下1个三角形,得到2个三角形和1个六边形……如此下去,剪了58刀后,得到58个三角形和1个六十二边形.再取出33个三角形,在每个三角形上剪一刀,又可得到33个三角形和33个四边形,对这33个四边形,按上述正方形的剪法,再各剪58刀,便得到33个六十二边形和33×58个三角形.于是共剪了58+33+33×58=2005(刀).

易错点

查看相关视频

下载次数:2

<<上一题   下一题>>