已知:如图,BD⊥AC,EF⊥AC,垂足分别为D,F,G是AB上一点,且∠l=∠2.
求证:GD//BC.

证明:如图,

∵BD⊥AC(已知)
∴∠BDC=90°(垂直的定义)
∵EF⊥AC(已知)
∴∠EFC=90°(垂直的定义)
∴∠BDC=∠EFC(等量代换)
∴BD//EF( )
∴∠2=∠3( )
∵∠l=∠2(已知)
∴ (等量代换)
∴GD//BC(内错角相等,两直线平行)
①同位角相等,两直线平行;②两直线平行,同位角相等;③两直线平行,内错角相等;
④内错角相等,两直线平行;⑤∠l=∠3;⑥∠2=∠3.
以上空缺处依次所填正确的是( )
- A.①③⑥
- B.②①⑤
- C.④②⑥
- D.①②⑤
答案
正确答案:D

要证AB∥CD,考虑同位角,内错角,同旁内角,结合已知条件考虑内错角∠l=∠3.
由已知BD⊥AC,EF⊥AC,利用垂直的定义,∠BDC=90°,∠EFC=90°,
利用等量代换,得∠BDC=∠EFC,
利用同位角相等,两直线平行,得BD//EF(因此第一个空选①).
进而利用两直线平行,同位角相等,得∠2=∠3(因此第二个空选②).
结合已知∠l=∠2,利用等量代换,得∠1=∠3(因此第三个空选⑤).
最后利用内错角相等,两直线平行,得GD//BC.
故选D.

略
