学科测评首页 >> 题库 >>  八年级 >>  数学

如图,在四边形ABCD中,AB=AD,∠BAD=90°,P是直线CD上一点,连接PA,分别过点B,D作BE⊥PA,DF⊥PA,垂足分别为点E,F.
(1)如图1,当点P在边CD上时,求证:EF=BE-DF.

解题思路:
(1)由BE⊥PA,DF⊥PA,得∠DFA=∠AEB=90°,所以∠2+∠3=90°;
又有∠BAD=90°,可以得到∠1+∠3=90°,因此             ,理由是                 
又因为AD=BA,∠DFA=∠AEB,因此根据三角形全等的判定定理           ,可以得到△DFA≌△AEB,由全等的性质得到                      ,最后得到EF=AF-AE=BE-DF.
①∠BAE=∠ADF;②∠1=∠2;③同角或等角的余角相等;④同角或等角的补角相等;
⑤AF=BE,DF=AE;⑥∠3=∠ADF,AF=BE;⑦AAS;⑧ASA
以上横线处,依次所填正确的是(    )

  • A.①③⑧⑤
  • B.②③⑦⑤
  • C.②④⑧⑥
  • D.①③⑦⑥

答案

正确答案:B

知识点:类比探究  全等三角形的判定和性质  

解题思路


易错点

查看相关视频

下载次数:0

<<上一题   下一题>>