在△ABC中,∠C>∠B,AE平分∠BAC,F为射线AE上一点(不与点E重合),且FD⊥BC于D.
(1)如果点F与点A重合,且∠C=50°,∠B=30°,如图1,求∠EFD的度数.
(2)如果点F在线段AE上(不与点A重合),如图2,则∠EFD与∠C-∠B有怎样的数量关系?并说明理由.
(3)如果点F在△ABC外部,(2)中的结论是否仍然成立?若成立,请在图3中画出符合题意的图形并说明理由;若不成立,请直接写出成立的结论.



答案
(1)10°;
(2)∠EFD=(∠C﹣∠B);理由略;
(3)不会发生变化;理由略.

(1)解:∵∠C=50°,∠B=30°,
∴∠BAC=180°﹣50°﹣30°=100°.
∵AE平分∠BAC,
∴∠BAE=50°.
在△ACE中∠AEC=∠B+∠BAE=80°,
在Rt△ADE中∠EFD=90°﹣80°=10°.
(2)∠EFD=(∠C﹣∠B)
证明:∵AE平分∠BAC,
∴∠BAE==90°﹣
(∠C+∠B)
∵∠AEC为△ABE的外角,
∴∠AEC=∠B+90°﹣(∠C+∠B)=90°+
(∠B﹣∠C)
∵FD⊥BC,
∴∠FDE=90°.
∴∠EFD=90°﹣90°﹣(∠B﹣∠C)
∴∠EFD=(∠C﹣∠B)
(3)∠EFD=(∠C﹣∠B).
如图,
∵AE平分∠BAC,
∴∠BAE=.
∵∠DEF为△ABE的外角,
∴∠DEF=∠B+=90°+
(∠B﹣∠C),
∵FD⊥BC,
∴∠FDE=90°.
∴∠EFD=90°﹣90°﹣(∠B﹣∠C)
∴∠EFD=(∠C﹣∠B).

略
