如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.
问:①当M点在何处时,AM+CM的值最小;
②当M点在何处时,AM+BM+CM的值最小, 并说明理由.

答案
①当M点落在BD的中点时,AM+CM的值最小.
②连接CE,当M点位于BD与CE的交点处时,
AM+BM+CM的值最小.
理由如下:连接MN,
∵△ABE是等边三角形,
∴BA=BE,∠ABE=60°.
∵∠MBN=60°,
∴∠MBN-∠ABN=∠ABE-∠ABN.
即∠BMA=∠NBE.
又∵MB=NB,
∴△AMB≌△ENB(SAS).
∴AM=EN,
∵∠MBN=60°,MB=NB,
∴△BMN是等边三角形.
∴BM=MN.
∴AM+BM+CM=EN+MN+CM.
根据“两点之间线段最短”,得EN+MN+CM=EC最短
∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长.

①根据“两点之间线段最短”,可得,当M点落在BD的中点时,AM+CM的值最小;
②根据“两点之间线段最短”,当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长.

对轴对称的性质和正方形的性质掌握不熟练
