1编号:25997题型:单选题测试正确率:60.0%
2编号:25996题型:单选题测试正确率:30.0%
研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x(吨)时,所需的全部费用y(万元)与x满足关系式,投入市场后当年能全部售出,且在甲、乙两地每吨的售价
,
(万元)均与x满足一次函数关系.(注:年利润=年销售额-全部费用).受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,(1)成果表明,在甲地生产并销售x吨时,
,年利润
(万元)与x之间的函数关系式为
,(2)成果表明,在乙地生产并销售x吨时,
(n为常数),且在乙地当年的最大年利润为35万元.n的值为15根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?下列选项中正确的是()
3编号:25992题型:单选题测试正确率:50.0%
4编号:25991题型:单选题测试正确率:0.0%
某企业为重庆计算机产业基地提供电脑配件,受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:
随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格
(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:
若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量
(万件)与月份x满足函数关系式
(1≤x≤9,且x取整数),10至12月的销售量
(万件)与月份x满足函数关系式
(10≤x≤12,且x取整数).设1至9月份每月的利润为
,10至12月份每月的利润为
,则
与x之间的函数关系式为()
5编号:25990题型:单选题测试正确率:50.0%
6编号:25989题型:单选题测试正确率:30.17%
7编号:25988题型:单选题测试正确率:42.83%
在气候对人类生存压力日趋加大的今天,发展低碳经济,全面实现低碳生活逐渐成为人们的共识.某企业采用技术革新,节能减排.从去年1至6月,该企业二氧化碳排放量(吨)与月份x(1≤x≤6,且x取整数)之间的函数关系如下表:
去年7至12月,二氧化碳排放量(吨)与月份x(7≤x≤12,且x取整数)的变化情况满足二次函数
(a≠0),且去年7月和去年8月该企业的二氧化碳排放量都为56吨.政府为了鼓励企业节能减排,决定对每月二氧化碳排放量不超过600吨的企业进行奖励.去年1至6月奖励标准如下,以每月二氧化碳排放量600吨为标准,不足600吨的二氧化碳排放量每吨奖励z(元)与月份x满足函数关系式
(1≤x≤6,且x取整数),如该企业去年3月二氧化碳排放量为200吨,那么该企业得到奖励的吨数为(600-200)吨;去年7至12月奖励标准如下:以每月二氧化碳排放量600吨为标准,不足600吨的二氧化碳排放量每吨奖励30元,如该企业去年7月份的二氧化碳排放量为56吨,那么该企业得到奖励的吨数为(600-56)吨.设去年1至6月中第x月政府奖励该企业的资金为
,7至12月中第x月政府奖励该企业的资金为
,则
与x之间、
与x之间的函数关系式为()
8编号:25986题型:单选题测试正确率:33.76%
为推进节能减排,发展低碳经济,我市某“用电大户”用480万元购得“变频调速技术”后,进一步投入资金1520万元购买配套设备,以提高用电效率达到节约用电的目的.已知该“用电大户”生产的产品“草甘磷”每件成本费为40元.经过市场调研发现:该产品的销售单价,需定在100元到300元之间较为合理.当销售单价定为100元时,年销售量为20万件;当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少0.8万件;当销售单价超过200元,但不超过300元时,每件产品的销售价格每增加10元,年销售量将减少1万件.设销售单价为x(元),年销售量为y(万件),年获利为w(万元).若该“用电大户”把“草甘磷”的销售单价定在超过100元,但不超过200元的范围内,并希望到第二年底,除去第一年的最大盈利(或最小亏损)后,两年的总盈利为1842万元,根据题意列方程得()
9编号:25985题型:单选题测试正确率:32.49%
为推进节能减排,发展低碳经济,我市某“用电大户”用480万元购得“变频调速技术”后,进一步投入资金1520万元购买配套设备,以提高用电效率达到节约用电的目的.已知该“用电大户”生产的产品“草甘磷”每件成本费为40元.经过市场调研发现:该产品的销售单价,需定在100元到300元之间较为合理.当销售单价定为100元时,年销售量为20万件;当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少0.8万件;当销售单价超过200元,但不超过300元时,每件产品的销售价格每增加10元,年销售量将减少1万件.设销售单价为x(元),年销售量为y(万件),年获利为w(万元).当、
时,第一年的年获利w与x函数关系式分别是()(年获利=年销售额-生产成本-节电投资)
10编号:25983题型:单选题测试正确率:0.0%