您选择的知识点:
  • 运动变化型问题删除

1编号:2967题型:单选题测试正确率:44.62%

(2011浙江湖州)如图,已知A、B是反比例函数图像上的两点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形OMPN的面积为S,P点运动时间为t,则S关于t的函数图像大致为()

2编号:2941题型:解答题测试正确率:38.46%

(2010年重庆)已知:如图(1),在平面直角坐标系中,边长为2的等边△OAB的顶点B在第一象限,顶点A在x轴的正半轴上.另一等腰△OCA的顶点C在第四象限,OC=AC,∠C=120°.现有两动点P,Q分别从A,O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿A→O→B运动,当其中一个点到达终点时,另一点也随之停止.(1)求在运动过程中形成的△OPQ的面积S与运动的时间t之间的函数关系式,并写出自变量t的取值范围;(2)在等边△OAB的边上(点A除外)存在点D,使得△OCD为等腰三角形,请直接写出所有符合条件的点D的坐标;(3)如图(2),现有∠MCN=60°,其两边分别与OB,AB交于点M,N,连接MN.将∠MCN绕着C点旋转(0°<旋转角<60°),使得M,N始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没变化,请求出周长;若发生变化,请说明理由.

3编号:2894题型:解答题测试正确率:44.07%

(2009绥化)直线与坐标轴分别交于两点,动点同时从点出发,同时到达点,运动停止.点沿线段运动,速度为每秒1个单位长度,点沿路线运动.(1)直接写出两点的坐标;(2)设点的运动时间为秒,的面积为,求出之间的函数关系式;(3)当时,求出点的坐标,并直接写出以点为顶点的平行四边形的第四个顶点的坐标.

4编号:2376题型:填空题测试正确率:100.0%

(2010河南)如图,在梯形ABCD中,AD∥BC,E是BC的中点,AD=5,BC=12,CD= ,∠C=45°,点P是BC边上一动点,设PB的长为x.
(1)当x的值为____________时,以点P、A、D、E为顶点的四边形为直角梯形;
(2)当x的值为____________时,以点P、A、D、E为顶点的四边形为平行四边形;;
(3)点P在BC边上运动的过程中,以P、A、D、E为顶点的四边形能否构成菱形?试说明理由.

5编号:2043题型:解答题测试正确率:68.09%

如图,在等边△ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以相同的速度由A向B和由C向A爬行,经过t分钟后,它们分别爬行到D、E处,请问(1)在爬行过程中,CD和BE始终相等吗?

(2)如果将原题中的“由A向B和由C向A爬行”,改为“沿着AB和CA的延长线爬行”,EB与CD交于点Q,其他条件不变,如图(2)所示,蜗牛爬行过程中∠CQE的大小保持不变.请利用图(2)情形,求证:∠ CQE =60°;

(3)如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,如图(3),则爬行过程中,DF始终等于EF是否正确.


6编号:1920题型:证明题测试正确率:62.58%

(2008天津)已知Rt△ABC中,∠ACB=90°,CA=CB,有一个圆心角为45°,半径的长等于CA的扇形CEF绕点C旋转,且直线CE,CF分别与直线AB交于点M,N.
(1)当扇形CEF绕点C在∠ACE的内部旋转时,如图①,求证:MN²=AM²+BN²

(2)当扇形CEF绕点C旋转至图②的位置时,关系式MN²=AM²+BN²
是否仍然成立?若成立,请证明;若不成立,请说明理由

第7页 共7页 首页<<1234567>>尾页  GOTO