如图,在Rt△ABC中,CD是斜边AB上的高,点M在CD上,DH⊥BM且与AC的延长线交于点E.
求证:(1)△AED∽△CBM;(2)

答案
证明:(1)∵∠ACB=∠ADC=90°
∴∠A+∠ACD=90°
∠BCM+∠ACD=90°
∴∠A=∠BCM
同理可得:∠MDH=∠MBD
∵∠CMB=∠CDB+∠MBD=90°+∠MBD
∠ADE=∠ADC+∠MDH=90°+∠MDH
∴∠ADE=∠CMB
∴△AED∽△CBM
(2)由上问可知:,
即
故只需证明即可
∵∠A=∠A,∠ACD=∠ABC
∴△ACD∽△ABC
∴,即
∴
知识点:相似基本模型应用

略

略
