1编号:113266题型:单选题测试正确率:0%
(上接第3,4题)(3)如图③,说明△ADM是等腰直角三角形之前,证明AD=DM需要直接使用到某对三角形全等,则判定这对三角形全等的条件是( )
2编号:113265题型:单选题测试正确率:0%
(上接第3题)(2)将图①中△BDE绕B点旋转任意角度,如图③所示,再连接相应的线段,则(1)中的结论中,AF=DF以及AF⊥DF仍然成立,我们需要作的辅助线是( )
3编号:113264题型:单选题测试正确率:0%
已知等腰直角三角形ABC中,D为斜边BC上一点,过D点作DE⊥BC交AB于E,连接CE,F为CE中点,连接AF,DF,易证AF=DF.(1)若将图①中△BDE绕点B顺时针旋转45°,如图②所示,取CE的中点F,连接AF,DF,则下列结论中错误的是( )
4编号:113263题型:单选题测试正确率:0%
(上接第1题)在两种情况下,我们均可以说明点F在直线EN上,结合图1,下面哪个思路是正确的?( )
5编号:113262题型:单选题测试正确率:0%
如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).在图1中,点M在点B左侧,在图2中,点M在线段BC上,两个图中都可以证明EN=MF.我们的思路是连接DE,DF,然后证明两个三角形全等就能解决问题,我们证明三角形全等的判定定理是( )
6编号:113209题型:单选题测试正确率:0%
(上接第4题)如图3,在四边形ABCD中,AB=AD,E,F分别为DC,BC边上的点,且满足,当∠ABC与∠ADC满足( )时,可使得上问结论依然成立.
7编号:113208题型:单选题测试正确率:0%
如图1,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF.利用旋转的思想易证DE+BF=EF.如图2,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且.则DE,BF,EF之间的数量关系为( )
8编号:113207题型:单选题测试正确率:0%
(上接第1,2题)(3)如图,当点D在边CB的延长线上时,其他条件不变,则AC,CF,CD之间的数量关系为( )
9编号:113206题型:单选题测试正确率:0%
(上接第1题)(2)如图,当点D在边BC的延长线上时,其他条件不变,则AC,CF,CD之间的数量关系为( )
10编号:113205题型:单选题测试正确率:0%
已知△ABC为等边三角形,点D为直线BC上一动点(不与点B,C重合),以AD为边作等边△ADF(A,D,F按顺时针排列),连接CF.(1)如图,当点D在边BC上时,容易证明AC=CF+CD,在证明过程中需要用到某对三角形全等,则证明全等时用到的条件是( )
提醒: