您选择的知识点:
  • 等边三角形的性质删除

1编号:22299题型:单选题测试正确率:55.56%

如图,在等边△ABC中,D为BC边上的一点,P为AC边上的一点,∠ADP=60°,BD=1,CP=,则△ABC的边长为()

2编号:22296题型:单选题测试正确率:48.0%

如图,在等腰Rt△ABC中,AC=BC,以斜边AB为一边作等边△ABD,使点C,D在AB的同侧;再以CD为一边作等边△CDE,使点C,E落在AD的异侧.若AE=1,则CD的长为()

3编号:14822题型:解答题测试正确率:28.39%

如图,直角梯形OABC中,AB∥OC,∠OAB=90°且OA=AB,点A、C的坐标分别为(0,3)、(4,0),动点P从O点出发,沿线段OC向点C作匀速运动;动点Q从点B出发,沿线段BA向点A作匀速运动.过Q点垂直于AB的射线交AC于点M,交OC于点N.P、Q两点同时出发,速度都为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.
(1)求NC,MC的长(用含t的代数式表示);
(2)当t为何值时,四边形PCBQ构成平行四边形?
(3)是否存在某一时刻,使射线QN恰好将△AOC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由;
(4)探究:t为何值时,△PMC为等腰三角形.

4编号:10580题型:单选题测试正确率:17.19%

如图,AA′=BB′=CC′=2,∠AOB′=∠BOC′=60°,则的大小关系是( )

5编号:10577题型:单选题测试正确率:67.58%

(2011河北)如图1,两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,得到图2,则阴影部分的周长为().

6编号:9861题型:探究题测试正确率:70.0%

(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连接ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAB=∠MAE.(下面请你完成余下的证明过程)
(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则∠AMN=60°时,结论AM=MN是否还成立?请说明理由.
(3)若将(1)中的“正方形ABCD”改为“正n边形ABCD…X”,请你作出猜想:当∠AMN=           时,结论AM=MN仍然成立.(直接写出答案,不需要证明)

7编号:3441题型:单选题测试正确率:75.18%

(2009年·烟台中考)如图,等边△ABC的边长为3,P为BC上一点,且BP=1,D为AC上一点,若∠APD=60°,则CD的长为()

8编号:2757题型:解答题测试正确率:58.82%

(2010江西)课题:两个重叠的正多边型,其中一个绕某一顶点旋转所形成的有关问题。实验与论证设旋转角∠A1A0B1=α(α1A0A2),θ3,θ4,θ5,θ6,所表示的角如图所示。
(1)用含α的式子表示角的度数:θ3=          4=           θ5=_________
        
(2)图1-图4中,连接A0H时,在不添加其他辅助线的情况下,是否存在与直线A0H垂直且被它平分的线段?若存在,请选择期中的一个图给出证明;若不存在,请说明理由;归纳与猜想设正n边形A0A1A2…An1与正n边形A0B1B2…Bn1重合(其中,A1与B1重合),现将正n边形A0B1B2…Bn1绕顶点A0逆时针旋转α().
(3)设θn与上述“θ3,θ4,…”的意义一样,请直接写出θn的度数;(4)试猜想在正n边形的情形下,是否存在与直线A0H垂直且被它平分的线段?若存在,请将这条线段用相应的顶点字母表示出来(不要求证明);若不存在,请说明理由.

9编号:1669题型:探究题测试正确率:78.66%

如图所示,以△ABC的三边为边在BC的同侧分别作三个等边三角形△ABD、△BCE、△ACF,猜想:四边形ADEF是什么四边形,试证明你的结论.

第14页 共14页 首页<<567891011121314>>尾页  GOTO