您选择的知识点:
  • 删除

1编号:124253题型:单选题测试正确率:0%

如图,一个三级台阶的每一级的长、宽、高分别为50cm,30cm,10cm,A和B是这个台阶的两个相对的端点,A点处有一只壁虎,它想到B点去吃可口的食物,请你想一想,这只壁虎从A点出发,沿着台阶面爬到B点,需要爬行的最短路径长为(    )


2编号:124252题型:单选题测试正确率:0%

如图,四边形ABCD为正方形,O为AC,BD的交点,△DCE为直角三角形,∠CED=90°,∠DCE=30°,若,则正方形ABCD的面积为(    )

3编号:124251题型:单选题测试正确率:0%

如图,在Rt△ABC中,∠ACB=90°,AC=BC=10,CD是射线,∠BCF=60°,点D在AB上,AF,BE分别垂直于CD(或延长线)于F,E,则EF的长为(    )

4编号:124250题型:单选题测试正确率:0%

如图,在△ABC中,∠ACB=90°,AC=8,BC=7,以斜边AB为边向外作正方形ABDE,连接CE,则CE的长为(    )

5编号:124249题型:单选题测试正确率:0%

如图,四边形ABCD是正方形,直线l1,l2,l3分别过A,B,C三点,且l1∥l2∥l3,若l1与l2之间的距离为4,l2与l3之间的距离为5,则正方形ABCD的面积为(    )

6编号:124248题型:单选题测试正确率:0%

勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是将图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为(    )

7编号:124247题型:单选题测试正确率:0%

如图所示是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形的面积为64,小正方形的面积为9,若用x,y表示直角三角形的两直角边,下列四个说法:①,②,③,④.其中正确的是(    )

8编号:124246题型:单选题测试正确率:0%

如图,过正方形ABCD的顶点B作直线,分别过点A,C作直线的垂线,垂足分别为E,F.若AE=2,CF=3,则AB的长为(    )

9编号:124245题型:单选题测试正确率:0%

如图,是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的斜边和较短的直角边长分别为5和3,则小正方形的面积为(    )

10编号:124244题型:单选题测试正确率:0%

魏朝时期,刘徽利用下图通过“以盈补虚,出入相补”的方法,即“勾自乘为朱方,股自乘为青方,令出入相补,各从其类”证明了勾股定理.若图中AB=5,CE=7,则AE的长为(    )