2编号:121782题型:单选题测试正确率:0%
3编号:121781题型:单选题测试正确率:0%
4编号:121780题型:单选题测试正确率:0%
5编号:121779题型:单选题测试正确率:0%
6编号:121778题型:单选题测试正确率:0%
7编号:121777题型:单选题测试正确率:0%
8编号:121776题型:单选题测试正确率:0%
在四边形ABCD中,BA=BC,.
(1)如图,当点M,N分别在AD,CD上时,若∠BAD=∠BCD=90°,求证:MN=AM+CN.
解题思路:(1)如图,延长NC到E,使CE=AM,连接BE.
由∠BAD=∠BCD=90°,得∠BAM=∠BCE,因为BA=BC,AM=CE,因此根据三角形全等的判定定理 ,可以得到△BAM≌△BCE,由全等的性质得到 ;
又因为,可得 ,因此根据三角形全等的判定定理SAS,可以得到 ,由全等的性质得到MN=EN;
通过等量代换可得MN=EN=CE+CN=AM+CN.
①ASA;②SAS;③SSA;④AM=CE,BM=BE;⑤∠1=∠2,BM=BE;⑥∠1=∠2;⑦∠MBN=∠EBN;⑧△BMN≌△BEN;⑨△BAM≌△BCE.
以上横线处,依次所填正确的是( )
9编号:121775题型:单选题测试正确率:0%
10编号:121774题型:单选题测试正确率:0%
(上接第1题)(2)如图2,当点P在DC的延长线上时,求证:EF=DF-BE.
解题思路:
(2)由BE⊥PA,DF⊥PA,得∠DFA=∠AEB=90°,所以∠2+∠3=90°;又有∠BAD=90°,可以得到∠1+∠3=90°,因此 ,理由是 ;
又因为AD=BA,∠DFA=∠AEB,因此根据三角形全等的判定定理 ,可以得到△DFA≌△AEB,由全等的性质得到 ,最后得到
EF=AE-AF=DF-BE.
①∠BAE=∠ADF;②∠1=∠2;③同角或等角的补角相等;④同角或等角的余角相等;
⑤DF=AB,AF=BE;⑥AF=BE,DF=AE;⑦AAS;⑧ASA
以上横线处,依次所填正确的是( )