您选择的知识点:
  • 全等三角形的判定和性质删除

1编号:107049题型:单选题测试正确率:0%

已知△ABC中,AB=AC,点D为直线BC上一动点(不与点B,C重合),以AD为边作
△ADF(A,D,F按顺时针排列),使AD=AF,且∠BAC=∠DAF,连接CF.
(1)如图,当点D在边BC上时,求证:BC=CF+CD.

解题思路:(1)由∠BAC=∠DAF,得∠BAD=∠CAF;又因为AB=AC,AD=AF,因此根据三角形全等的判定定理           ,可以得到           ,由全等的性质得到                      ,通过等量代换可得BC=CF+CD.
①ASA;②SAS;③SSA;④△ADB≌△AFC;⑤△AFC≌△BAD;⑥△ADB≌△FCD;⑦BD=CF;
⑧BD=CF,BC=AC.
以上横线处,依次所填正确的是(    )

2编号:106994题型:单选题测试正确率:0%

(上接第4,5题)(3)如图3,若,若让你添加一个关于∠α与
∠BCA的条件,使结论EF=BE-AF仍然成立,则你添加的条件是(    )

3编号:106993题型:单选题测试正确率:0%

(上接第4题)(2)如图2,若∠BCA=60°,α=120°,结论EF=BE-AF仍成立吗?若成立,请给出证明,若不成立,请说明理由.

解题思路:(2)由∠BCA=60°,∠AFC=120°,可以得到∠2+∠3=60°,∠3+∠1=60°,得到             ,理由是                      .又因为CB=AC,∠BEC=∠CFA,因此根据全等三角形的判定定理           ,可以得到           ,由全等的性质得到CE=AF,BE=CF,
最后得到EF=CF-CE=BE-AF.
①∠2=∠3;②∠2=∠1;③等式的性质;④同角或等角的余角相等;
⑤△BEC≌△AFC;⑥△BEC≌△CFA;⑦ASA;⑧AAS
以上横线处,依次所填正确的是(    )

4编号:106992题型:单选题测试正确率:0%

如图,直线CD经过∠BCA的顶点C,点E,F在直线CD上,已知CA=CB,∠BEC=∠CFA=α.
(1)如图1,若∠BCA=90°,α=90°,试求证:EF=BE-AF.

解题思路:(1)由∠BCA=∠CFA=90°,可以得到∠2+∠3=90°,∠3+∠1=90°,得到             ,理由是                      
又因为BC=CA,∠BEC=∠CFA,因此根据三角形全等的判定定理           ,可以得到△BEC≌△CFA,由全等的性质得到                      ,最后得到EF=CF-CE=BE-AF.
①∠2=∠1;②∠2=∠3;③同角或等角的余角相等;④同角或等角的补角相等;
⑤CE=AF,BE=AC;⑥CE=AF,BE=CF;⑦AAS;⑧ASA
以上横线处,依次所填正确的是(    )

5编号:106991题型:单选题测试正确率:0%

(上接第1,2题)(3)如图3,当点P在CD的延长线上时,BE,DF,EF这三条线段之间的数量关系和证明思路分别是(    )

6编号:106990题型:单选题测试正确率:0%

(上接第1题)(2)如图2,当点P在DC的延长线上时,求证:EF=DF-BE.

解题思路:
(2)由BE⊥PA,DF⊥PA,得∠DFA=∠AEB=90°,所以∠2+∠3=90°;又有∠BAD=90°,可以得到∠1+∠3=90°,因此             ,理由是            
又因为AD=BA,∠DFA=∠AEB,因此根据三角形全等的判定定理           ,可以得到△DFA≌△AEB,由全等的性质得到                      ,最后得到
EF=AE-AF=DF-BE.
①∠BAE=∠ADF;②∠1=∠2;③同角或等角的补角相等;④同角或等角的余角相等;
⑤DF=AB,AF=BE;⑥AF=BE,DF=AE;⑦AAS;⑧ASA
以上横线处,依次所填正确的是(    )

7编号:106989题型:单选题测试正确率:0%

如图,在四边形ABCD中,AB=AD,∠BAD=90°,P是直线CD上一点,连接PA,分别过点B,D作BE⊥PA,DF⊥PA,垂足分别为点E,F.
(1)如图1,当点P在边CD上时,求证:EF=BE-DF.

解题思路:
(1)由BE⊥PA,DF⊥PA,得∠DFA=∠AEB=90°,所以∠2+∠3=90°;
又有∠BAD=90°,可以得到∠1+∠3=90°,因此             ,理由是                 
又因为AD=BA,∠DFA=∠AEB,因此根据三角形全等的判定定理           ,可以得到△DFA≌△AEB,由全等的性质得到                      ,最后得到EF=AF-AE=BE-DF.
①∠BAE=∠ADF;②∠1=∠2;③同角或等角的余角相等;④同角或等角的补角相等;
⑤AF=BE,DF=AE;⑥∠3=∠ADF,AF=BE;⑦AAS;⑧ASA
以上横线处,依次所填正确的是(    )

8编号:106552题型:单选题测试正确率:0%

如图,在菱形ABCD中,边长为2,∠B=60°.将△ACD绕点C旋转,当AC(即)与AB交于点E,CD(即)与AD交于点F时,点E,F和A构成△AEF,则△AEF周长的最小值为( )

9编号:106531题型:单选题测试正确率:0%

如图,点C是线段AB上除点A,B外的任意一点,分别以AC,BC为边在线段AB的同侧作等边△ACD和等边△BCE,连接AE交DC于M,连接BD交CE于N,连接MN.有下列结论:①AE=BD;②△MNC是等边三角形;③MN∥AB;④∠BDC+∠AEC=60°.其中正确的是(    )

10编号:98776题型:单选题测试正确率:0%

(上接第4题)(3)题干中的其他条件不变,当BC⊥CE时,要证明MD⊥MB,在4第题添加的辅助线的基础上,要证明△BCD≌△FED,理由是(    )

第5页 共18页 首页<<12345678910>>尾页  GOTO