1编号:18634题型:解答题测试正确率:0.0%

将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为8cm,宽为6cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱体,它们的体积分别是多大?

2编号:18633题型:解答题测试正确率:0.0%

若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和为10,求x+y+z的值.

3编号:17186题型:解答题测试正确率:0%

在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.
(1)在图1中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;
(2)当三角尺沿AC方向平移到图2所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系,然后证明你的猜想;
(3)当三角尺在(2)的基础上沿AC方向继续平移到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)

4编号:17185题型:解答题测试正确率:0%

数学课上,李老师出示了如下框中的题目.

小敏与同桌小聪讨论后,进行了如下解答:
(1)特殊情况,探索结论
当点E为AB的中点时,如图1,确定线段AE与DB的大小关系.请你直接写出结论:AE__DB(填“>”、“<”或“=”)
(2)特例启发,解答题目
解:题目中,AE与DB的大小关系是:AE__DB(填“>”、“<”或“=”).理由如下:如图2,过点E作EF//BC,交AC于点F,(请你完成以下解答过程)

(3)拓展结论,设计新题
在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).

5编号:17184题型:解答题测试正确率:0%

数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角的平分线CF于点F,求证:AE=EF.
经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.

6编号:17183题型:解答题测试正确率:0%

如图,CD是经过∠BCA顶点C的一条直线,且直线CD经过∠BCA的内部,点E,F在射线CD上,已知CA=CB且∠BEC=∠CFA=∠α.
(1)如图1,若∠BCA=90°,∠α=90°,问EF=BE-AF,成立吗?说明理由.
(2)将(1)中的已知条件改成∠BCA=60°,∠α=120°(如图2),问EF=BE-AF仍成立吗?说明理由.
(3)若0°<∠BCA<90°,请你添加一个关于∠α与∠BCA关系的条件,使结论EF=BE-AF仍然成立.你添加的条件是.(直接写出结论)
(4)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).

7编号:17182题型:解答题测试正确率:0%

在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;
②DE=AD+BE;
(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.

8编号:16989题型:解答题测试正确率:73.72%

某校为了了解七年级学生体育测试成绩情况,抽查了一部分学生的体育测试成绩,甲、乙两位同学将抽查出的学生的测试成绩按A、B、C、D四个等级进行统计,并将统计结果绘制成如下统计图(如图),其中测试成绩在90~100分为A级,75~89分为B级,60~74分为C级,60分以下为D级.甲同学计算出成绩为C的频率是0.2,乙同学计算出成绩为A、B、C的频率之和为0.96.结合统计图回答下列问题:
(1)这次抽查了多少人?
(2)若该校七年级学生共有500人,请你估计这次体育测试成绩为A级和B级的学生共有多少人?

9编号:16988题型:解答题测试正确率:79.49%

如图,已知BD⊥AC,EF⊥AC,D、F为垂足,G是AB上一点,且∠l=∠2.判断∠AGD和∠ABC的数量关系?并说明你的理由.

10编号:16987题型:解答题测试正确率:67.44%

某园林部门决定利用现有的349盆甲种花卉和295盆乙种花卉搭配A、B两种园艺造型共50个,摆放在迎宾大道两侧.已知搭配一个A种造型需甲种花卉8盆,乙种花卉4盆;搭配一个B种造型需甲种花卉5盆,乙种花卉9盆.
(1)某校九年级某班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来;
(2)若搭配一个A种造型的成本是200元,搭配一个B种造型的成本是360元,试说明(1)中哪种方案成本最低,最低成本是多少元?