您选择的知识点:
  • 规律探索型问题删除

1编号:3598题型:解答题测试正确率:86.47%

2010河南(1)操作发现如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G在矩形ABCD内部.小明将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由.(2)问题解决保持(1)中的条件不变,若DC=2DF,求的值;(3)类比探求保持(1)中条件不变,若DC=nDF,求的值.

2编号:2951题型:单选题测试正确率:28.95%

(2011河北)如图9,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第10次“移位”后,则他所处顶点的编号是            .

3编号:2950题型:单选题测试正确率:28.95%

(2011•甘肃兰州)如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去,已知第一个矩形的面积为1,则第n个矩形的面积为()

4编号:2949题型:单选题测试正确率:39.47%

(2011•四川省内江市) 在直角坐标系中,正方形A1B1C1O,A2B2C2C1、…、AnBnCnCn-1按如图所示的方式放置,其中点A1、A2、A3、…、An均在一次函数y=kx+b的图象上,点B1、B2、B3、…、Bn均在x轴上.若点B1的坐标为(1,1),点B2的坐标为(3,2),则点An的坐标为()

5编号:2948题型:单选题测试正确率:42.11%

(2011浙江中考)如图下面是按照一定规律画出的一行“树形图”,经观察可以发现:图A2比图A1多出了2个“树枝”,图A3比图A2多出了4个“树枝”,图A4比图A3多出了8个“树枝”,…,照此规律,则图A6比图A2多出 “树枝”()

6编号:2947题型:单选题测试正确率:0%

(2011山东菏泽)填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是()

7编号:1874题型:填空题测试正确率:79.81%

观察下列图形

根据图一、二、三的规律,图四中三角形的个数为________个.

8编号:1872题型:填空题测试正确率:80.43%

意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…, 其中从第三个数起,每一个数都等于它前面两上数的和.现以这组数中的各个数作为正方形的长度构造如下正方形:

再分别依次从左到右取2个、3个、4个、5个,正方形拼成如下矩形并记为①、②、③、④.相应矩形的周长如下表所示:


若按此规律继续作矩形,则序号为⑩的矩形周长是_______________.

9编号:1864题型:探究题测试正确率:70.42%

(2011浙江)以四边形ABCD的边AB、BC、CD、DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,顺次连结这四个点,得四边形EFGH.
(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状(不要求证明);
(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=α(0°<α<90°),
① 试用含α的代数式表示∠HAE;
② 求证:HE=HG;
③ 四边形EFGH是什么四边形?并说明理由

10编号:1860题型:探究题测试正确率:64.79%

(2011辽宁)在四边形ABCD中,对角线AC、BD相交于点O,设锐角∠DOC=α.将△DOC绕点O按逆时针方向旋转得到△D’OC’(0°<旋转角<90°).连接AC’、BD’,AC’与BD’相交于点M.
(1)当四边形ABCD是矩形时,如图1,请猜想AC’与BD’的数量关系以及∠AMB与α的大小关系,并证明你的猜想;
(2)当四边形ABCD是平行四边形时,如图2,已知AC=kBD,请猜想此时AC’与BD’的数量关系以及∠AMB与α的大小关系,并证明你的猜想;
(3)当四边形ABCD是等腰梯形时,如图3,AD∥BC,此时(1)中AC’与BD’的数量关系是否成立?∠AMB与α的大小关系是否成立?不必证明,直接写出结论.

第3页 共7页 首页<<1234567>>尾页  GOTO