您选择的知识点:
  • 三角形全等之类比探究删除

1编号:126730题型:单选题测试正确率:0%

(上接第1题)(2)如图2,当点M,N分别在DA,CD的延长线上时,若∠BAD与∠BCD互补,求证:MN=CN-AM.

如图,下面给出了证明的路线图:


请你仔细观察下列序号所代表的内容:
①△BAM≌△BCE(SAS);②△BMN≌△BEN(SAS);③∠1=∠2,BM=BE;④BM=BE,BA=BC;⑤∠1=∠2.
以上横线处,依次所填最恰当的是(    )

2编号:126729题型:单选题测试正确率:0%

在四边形ABCD中,BA=BC,
(1)如图1,当点M,N分别在AD,CD上时,若∠BAD+∠BCD=180°,求证:MN=AM+CN.

先在图上走通思路后再填写空格内容:
(1)如图,延长NC到E,使CE=AM,连接BE.

由∠BAD+∠BCD=180°,∠BCE+∠BCD=180°,利用同角的补角相等,得∠BAD=∠BCE;因为BA=BC,AM=CE,因此根据三角形全等的判定           ,可以得到△BAM≌△BCE,由全等的性质得到                      
又因为,可得             ,因此根据三角形全等的判定SAS,可以得到           ,由全等的性质得MN=EN;所以MN=EN=CE+CN=AM+CN.
请你仔细观察下列序号所代表的内容:
①ASA;②SAS;③SSA;④AM=CE,BM=BE;⑤∠1=∠2,BM=BE;⑥∠1=∠2;⑦∠MBN=∠EBN;⑧△MBN≌△EBN;⑨△BAM≌△MDN.
以上空缺处依次所填最恰当的是(    )

3编号:126728题型:单选题测试正确率:0%

(上接第1,2题)(3)如图,当点D在边CB的延长线上时,其他条件不变,则BC,CF,CD之间的数量关系和证明思路分别是(    )

4编号:126727题型:单选题测试正确率:0%

(上接第1题)(2)如图,当点D在边BC的延长线上时,其他条件不变,则BC,CF,CD之间的数量关系和证明思路分别是(    )

5编号:126726题型:单选题测试正确率:0%

已知△ABC中,AB=AC,点D为直线BC上一动点(不与点B,C重合),以AD为边作△ADF(A,D,F按顺时针排列),使AD=AF,且∠BAC=∠DAF,连接CF.
(1)如图,当点D在边BC上时,求证:BC=CF+CD.

先在图上走通思路后再填写空格内容:
(1)由∠BAC=∠DAF,得∠BAD=∠CAF;又因为AB=AC,AD=AF,因此根据三角形全等的判定           ,可得           ,由全等的性质得                      ,所以BC=BD+CD=CF+CD.
请你仔细观察下列序号所代表的内容:
①ASA;②SAS;③SSA;④△ADB≌△AFC;⑤△AFC≌△BAD;⑥△ADB≌△FCD;⑦BD=CF;⑧BD=CF,BC=AC.
以上空缺处依次所填最恰当的是(    )

6编号:126709题型:单选题测试正确率:0%

(上接第4,5题)(3)如图3,若,若让你添加一个关于∠α与∠BCA的条件,使结论EF=BE-AF仍然成立,则你添加的条件是(    )

7编号:126708题型:单选题测试正确率:0%

(上接第4题)(2)如图2,若∠BCA=60°,α=120°,结论EF=BE-AF仍成立吗?若成立,请给出证明,若不成立,请说明理由.

先在图上走通思路后再填写空格内容:
(2)由∠BCA=60°,∠AFC=120°,可以得到∠2+∠3=60°,∠3+∠1=60°,得到             ,理由是                      .又因为CB=AC,∠BEC=∠CFA,因此根据全等三角形的判定           ,可以得到           ,由全等的性质得CE=AF,BE=CF,所以EF=CF-CE=BE-AF.
请你仔细观察下列序号所代表的内容:
①∠2=∠3;②∠2=∠1;③等式性质;④同角或等角的余角相等;
⑤△BEC≌△AFC;⑥△BEC≌△CFA;⑦ASA;⑧AAS.
以上空缺处依次所填最恰当的是(    )

8编号:126707题型:单选题测试正确率:0%

如图1,直线CD经过∠BCA的顶点C,点E,F在直线CD上,已知CA=CB,∠BEC=∠CFA=α.
(1)如图1,若∠BCA=90°,α=90°,试求证:EF=BE-AF.

先在图上走通思路后再填写空格内容:
(1)由∠BCA=∠CFA=90°,可以得到∠2+∠3=90°,∠3+∠1=90°,得到             ,理由是                      
又因为BC=CA,∠BEC=∠CFA,因此根据三角形全等的判定           ,可以得到△BEC≌△CFA,由全等的性质得                      ,所以EF=CF-CE=BE-AF.
请你仔细观察下列序号所代表的内容:
①∠2=∠1;②∠2=∠3;③同角或等角的余角相等;④同角或等角的补角相等;
⑤CE=AF,BE=AC;⑥CE=AF,BE=CF;⑦AAS;⑧ASA
以上空缺处依次所填最恰当的是(    )

9编号:126706题型:单选题测试正确率:0%

(上接第1,2题)(3)如图3,当点P在CD的延长线上时,BE,DF,EF这三条线段之间的数量关系和证明思路分别是(    )

10编号:126705题型:单选题测试正确率:0%

(上接第1题)(2)如图2,当点P在DC的延长线上时,求证:EF=DF-BE.

先在图上走通思路后再填写空格内容:
(2)由BE⊥PA,DF⊥PA,得∠DFA=∠AEB=90°,所以∠2+∠3=90°;又有∠BAD=90°,可以得到∠1+∠3=90°,因此             ,理由是            
又因为AD=BA,∠DFA=∠AEB,因此根据三角形全等的判定           ,可以得到△DFA≌△AEB,由全等的性质得                      ,所以EF=AE-AF=DF-BE.
请你仔细观察下列序号所代表的内容:
①∠BAE=∠ADF;②∠1=∠2;③同角或等角的补角相等;④同角或等角的余角相等;⑤DF=AB,AF=BE;⑥AF=BE,DF=AE;⑦AAS;⑧ASA
以上空缺处依次所填最恰当的是(    )

第1页 共9页 首页<<123456789>>尾页  GOTO